
MPI Global-Restart Fault Tolerance Specification

Version 0.2

Unofficial, for comment only

Ignacio Laguna and Giorgis Georgakoudis
ilaguna@llnl.gov, georgakoudis1@llnl.gov

Lawrence Livermore National Laboratory

June 16, 2021

Chapter 1

Global-Restart Fault Tolerance

1.1 Introduction

The traditional method to handle process failures in large-scale scientific applications is
periodic, global synchronous checkpoint/restart (CPR). When a process failure occurs in a
bulk synchronous MPI program, it quickly propagates to other processes so re-starting the
application from a previously-saved checkpoint is a simple solution to recover from failures.

A large number of MPI applications already use some form of global synchronous CPR.
The goal of global-restart fault tolerance is to provide an easy-to-use interface to improve
the efficiency of CPR in bulk synchronous applications by reducing as much as possible the
recovery time when failure occurs.

In this chapter, we refer to the global-restart fault tolerance model and interface as the
Reinit (i.e., re-initialization) model and interface, respectively.

User s
ubmits

 jo
b

Progra
m begin

s

Main
 lo

op begin
s

End of it
erat

ion 1

Resources allocated

End of it
erat

ion 2

Program data initialized

Program checkpoint loaded
Traditional

CPR

Reinit
Failure

Recovery
Program checkpoint loaded

Proce
ss

fai
lure

MPI state is created,
e.g., communicators

MPI is setup

Checkpoint stored

Recovery time

Recovery time

Time

Checkpoint stored

Figure 1.1: The global-restart fault tolerance model (Reinit) provides a mechanisms to
reduce the recovery time for bulk synchronous applications that use periodic synchronous
checkpoint/restart.

Unofficial Draft for Comment Only 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 1. GLOBAL-RESTART FAULT TOLERANCE

1.2 Fault Model

The Reinit model provides a pre-defined fault-tolerance mechanism to survive MPI process
failures. We use the definition of process failures used in Section 2.8, i.e., a process failure
occurs when an MPI process unexpectedly and permanently stops communicating (e.g., a
software or hardware crash results in an MPI process terminating unexpectedly). In the
rest of the chapter, when we refer to failures we mean MPI process failures.

The Reinit model assumes that the application’s data will be recovered after a failure.
The application can use different mechanisms to recover its data, for example, reloading a
checkpoint that was saved before the failure occurred or re-generating the data.

1.3 Reinit MPI Interface

The Reinit interface for global-restart fault tolerance is composed of two MPI functions:
MPI_REINIT and MPI_TEST_FAILURE. This section describes the syntax of these MPI func-
tions.

MPI Reinit

int MPI_Reinit(resilient_fn, void *data)

IN resilient fn user defined procedure (function)
IN data pointer to user defined data

The user-defined procedure should be in C, a function of type MPI Reinit function
which is defined as:

typedef MPI_Reinit_fn void (*)(void *data));

The first argument is a user defined procedure, resilient_fn, which is called by the
MPI Reinit procedure. The second argument is a pointer to user defined data. This pointer
is passed as an argument to the user defined procedure, resilient_fn, when the procedure
is called. A valid MPI program must contain at most one call to the MPI Reinit procedure.
Calling MPI Reinit more than one time results in undefined behavior.

The purpose of the user defined resilient_fn procedure is to specify a rollback loca-
tion, i.e., a program location to resume execution after a process failure occurs. Depending
on the error handler being used, upon the detection of a process failure, MPI will cause
the execution of the program to resume at the resilient_fn procedure synchronously or
asynchronously (see the Error Handling section for more details).

After the resilient_fn procedure is re-executed due to failure recovery, the only valid
communication objects are the communicators MPI COMM WORLD, MPI COMM SELF, MPI -

COMM NULL.

Advice to users. MPI objects that are created before MPI Reinit is called will not
be valid when the resilient_fn procedure is re-executed due to a failure. (End of
advice to users.)

Calling the MPI Reinit procedure sets the resilient_fn procedure to be a rollback
location and makes this rollback location active. After activating the rollback location,
MPI Reinit calls the resilient_fn procedure. After the MPI Reinit procedure returns, the
rollback location becomes inactive. If a failure occurs during an inactive rollback location,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

1.4. ERROR HANDLING 3

MPI cannot resume execution at the rollback location, and as a result cannot recover from
failures using the Reinit model.

Advice to users. To able to survive most of the process failures that can occur during
the execution of the program, most calls to MPI and computation should be executed
before MPI Reinit returns. (End of advice to users.)

An MPI process must invoke MPI FINALIZE only after MPI Reinit returns.

MPI Test failure

int MPI_Test_failure()

The MPI Test failure procedure causes the program to resume execution at the rollback
point that was activated by MPI Reinit when two conditions occur: (1) the MPI ERRORS -
REINIT SYNC handler is associated with MPI COMM WORLD, and (2) a failure has been
detected before MPI Test failure is called.

If no failures were detected before MPI Test failure is called, the return code value is
MPI SUCCESS and the procedure performs no operations. If on the other hand failures are
detected before the procedure is called, the procedure does not return and it immediately
resumes execution at the rollback point.

1.4 Error Handling

MPI provides two predefined error handlers that can be used to handle failures using the
Reinit model. These error handlers are intended to be used to handle failures when the
World Model is used to initialize MPI. The Reinit error handlers have no effect when the
Sessions Model is used.

Unlike other predefined error handlers, such as MPI ERRORS ARE FATAL, that can
be associated to communicator, window, file, and session objects, the Reinit error han-
dlers must be associated only to the predefined MPI COMM WORLD communicator in
the World Model. Associating the Reinit error handlers to window, file, session objects, or
communicators other than MPI COMM WORLD is undefined.

Rationale. Associating the Reinit error handler to MPI COMM SELF would have no
effect if a failure occurs because the process that contains MPI COMM SELF failed
and the error handler cannot be called. Since a process failure during the handling of
MPI objects, such as windows, files and sessions eventually manifest itself as a process
failure in MPI COMM WORLD, it makes sense to associate a Reinit error handler to
MPI COMM WORLD only. (End of rationale.)

The following Reinit error handlers are available in MPI:

• MPI ERRORS REINIT ASYNC: The handler is called by MPI immediately af-
ter a process failure is detected. The handler, when called, causes the execution of
the program to resume at (or jump back to) the active rollback location that was
activated by MPI Reinit.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. GLOBAL-RESTART FAULT TOLERANCE

• MPI ERRORS REINIT SYNC: The handler has two effects. The first effect is
that it enables the MPI Test failure function to cause the execution of the program
to resume at (or jump back to) the active rollback location when MPI Test failure is
called. The second effect is that it returns the error code to the user.

Using the MPI ERRORS REINIT ASYNC handler causes MPI to resume execution
of the program when an error is detected whether or not the error is detected during a call
to MPI. On the other hand, using the MPI ERRORS REINIT SYNC handler causes MPI
to resume execution only after MPI Test failure function is called if an error was detected.

1.4.1 Association of Error Handlers

The Reinit error handlers must be associated to MPI COMM WORLD before the MPI -
Reinit procedure is called. Calling MPI Reinit before associating any of the Reinit error
handlers produces undefined behavior.

After a Reinit error handler has been associated to MPI COMM WORLD, it is invalid
to associate a different Reinit error handler to MPI COMM WORLD.

Figure 1.2: Different error scenarios for the MPI ERRORS REINIT SYNC error handler.

1.4.2 Behavior for Specific Error Conditions

If an error occurs and one of the Reinit error handlers has been set but there is no ac-
tive Reinit rollback location, MPI will behave as if the MPI ERRORS ARE FATAL error
handler is set (see Figure 1.2).

Errors can occur between the moment the MPI ERRORS REINIT SYNC handler is
set and the MPI Test failure function is called. If an error occurs in such period of time,
MPI behaves as if the MPI ERRORS RETURN handler is set.

1.5 Tools

The Reinit interface supports the use of MPI tools. The following must be taken into
consideration when writing MPI tools:

• The Reinit interface assumes that, when a process failure occurs, data may be lost.
If a tool requires data that can be lost due to failures, the tool must implement a
mechanism to recover such data, for example, reloading a checkpoint.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

1.6. EXAMPLES 5

• An MPI implementation should provide a performance variable of type MPI T -
PVAR CLASS COUNTER that reflects the number of times the MPI process has
been reinitialized due to failures. The variable has a value of zero initially and it is
incremented every time the program resumes execution at the rollback location.

• The performance variables that are provided by an MPI implementation are not reset
when execution resumes at the rollback location. Tools are responsible for presenting
information about performance variables to users after taking into account failures.

1.6 Examples

We present a few examples of how to use the Reinit interface with synchronous and asyn-
chronous error handlers.

Example 1.1 Using Reinit with asynchronous error handling to recover from process
failures

typedef struct {

int argc;

char **argv;

} data_t;

void resilient_function(void *arg)

{

data_t *data = (data_t *)arg;

// Cleanup library, if needed

cleanup_library_state();

// Resume computation from checkpoint

// or initialize application data

if(load_checkpoint())

printf("Resume from checkpoint\n");

else

init_app_data(data->argc, data->argv);

bool done = false;

while(!done) {

done = compute();

store_checkpoint();

}

}

int main(int argc, char *argv[])

{

// Initialize user defined data type

data_t data = { argc, argv };

MPI_Init(argc, argv);

MPI_Comm_set_errhandler(MPI_COMM_WORLD, MPI_ERRORS_REINIT_ASYNC);

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 1. GLOBAL-RESTART FAULT TOLERANCE

// MPI_Reinit sets the rollback location

// to resilient_function and calls it.

// In asynchronous error handling, the program

// will go to the rollback location as soon a

// failure is detected

MPI_Reinit(&data, resilient_function);

MPI_Finalize();

return 0;

}

Example 1.2 Using Reinit with synchronous error handling to recover from process
failures

void resilient_function(void *arg)

{

data_t *data = (data_t *)arg;

// Cleanup library, if needed

cleanup_library_state();

// Resume computation from checkpoint

// or initialize application data

if(load_checkpoint())

printf("Resume from checkpoint\n");

else

init_app_data(data->argc, data->argv);

bool done = false;

while(!done) {

done = compute();

MPI_Test_failure();

store_checkpoint();

// Calling MPI_Test_failure will go to the

// rollback location, that is resilient_function,

// in case of a failure

// MPI + computation

compute();

MPI_Test_failure();

// MPI + computation

compute();

MPI_Test_failure();

}

}

1.7 To-Do List

While the Reinit specification is almost complete, a few aspects my require further clarifi-
cation, which include the following:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

1.7. TO-DO LIST 7

1. Do we need to define FORTRAN bindings?

2. Can we allow multiple and consecutive Reinit points (blocks)?

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 1. GLOBAL-RESTART FAULT TOLERANCE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

	1 Global-Restart Fault Tolerance
	1.1 Introduction
	1.2 Fault Model
	1.3 Reinit MPI Interface
	1.4 Error Handling
	1.4.1 Association of Error Handlers
	1.4.2 Behavior for Specific Error Conditions

	1.5 Tools
	1.6 Examples
	1.7 To-Do List

